Host gene expression classifiers diagnose acute respiratory illness etiology.

نویسندگان

  • Ephraim L Tsalik
  • Ricardo Henao
  • Marshall Nichols
  • Thomas Burke
  • Emily R Ko
  • Micah T McClain
  • Lori L Hudson
  • Anna Mazur
  • Debra H Freeman
  • Tim Veldman
  • Raymond J Langley
  • Eugenia B Quackenbush
  • Seth W Glickman
  • Charles B Cairns
  • Anja K Jaehne
  • Emanuel P Rivers
  • Ronny M Otero
  • Aimee K Zaas
  • Stephen F Kingsmore
  • Joseph Lucas
  • Vance G Fowler
  • Lawrence Carin
  • Geoffrey S Ginsburg
  • Christopher W Woods
چکیده

Acute respiratory infections caused by bacterial or viral pathogens are among the most common reasons for seeking medical care. Despite improvements in pathogen-based diagnostics, most patients receive inappropriate antibiotics. Host response biomarkers offer an alternative diagnostic approach to direct antimicrobial use. This observational cohort study determined whether host gene expression patterns discriminate noninfectious from infectious illness and bacterial from viral causes of acute respiratory infection in the acute care setting. Peripheral whole blood gene expression from 273 subjects with community-onset acute respiratory infection (ARI) or noninfectious illness, as well as 44 healthy controls, was measured using microarrays. Sparse logistic regression was used to develop classifiers for bacterial ARI (71 probes), viral ARI (33 probes), or a noninfectious cause of illness (26 probes). Overall accuracy was 87% (238 of 273 concordant with clinical adjudication), which was more accurate than procalcitonin (78%, P < 0.03) and three published classifiers of bacterial versus viral infection (78 to 83%). The classifiers developed here externally validated in five publicly available data sets (AUC, 0.90 to 0.99). A sixth publicly available data set included 25 patients with co-identification of bacterial and viral pathogens. Applying the ARI classifiers defined four distinct groups: a host response to bacterial ARI, viral ARI, coinfection, and neither a bacterial nor a viral response. These findings create an opportunity to develop and use host gene expression classifiers as diagnostic platforms to combat inappropriate antibiotic use and emerging antibiotic resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review on the role of host genetic factors in the susceptibility to SARS-CoV-2

Background: Severe acute respiratory system Cov-2 pandemic has affected the world populations for more than one year. Different incidence and severity of this viral disease among various age range and individuals with different background disease may indicate the pivotal role of host genetic factors in their prevalence and mortality rate. In this regards, present study was performed to review t...

متن کامل

Host Transcriptional Response to Influenza and Other Acute Respiratory Viral Infections – A Prospective Cohort Study

To better understand the systemic response to naturally acquired acute respiratory viral infections, we prospectively enrolled 1610 healthy adults in 2009 and 2010. Of these, 142 subjects were followed for detailed evaluation of acute viral respiratory illness. We examined peripheral blood gene expression at 7 timepoints: enrollment, 5 illness visits and the end of each year of the study. 133 c...

متن کامل

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

Prediction of blood cancer using leukemia gene expression data and sparsity-based gene selection methods

Background: DNA microarray is a useful technology that simultaneously assesses the expression of thousands of genes. It can be utilized for the detection of cancer types and cancer biomarkers. This study aimed to predict blood cancer using leukemia gene expression data and a robust ℓ2,p-norm sparsity-based gene selection method. Materials and Methods: In this descriptive study, the microarray ...

متن کامل

Genome-wide computational prediction of miRNAs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed target genes involved in pulmonary vasculature and antiviral innate immunity

The current outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)in China threatened humankind worldwide. The coronaviruses contains the largest RNA genome among all other known RNA viruses, therefore the disease etiology can be understood by analyzing the genome sequence of SARS-CoV-2. In this study, we used an ab-intio based computational tool VMir to scan the complete geno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science translational medicine

دوره 8 322  شماره 

صفحات  -

تاریخ انتشار 2016